

Primary Based on Latest MOE Syllabus

+hinkingMath@ onSponge CONQUER PROBLEM SUMS

- Proven strategies used by top performing schools to conquer problem sums
- Structured and guided approach to support learning in school
- Challenging questions to excel in P4 Mathematics

www.onsponge.com

© 2018 onSponge Private Limited

Published by **onSponge Pte Ltd** Company Registration Number: 200802783R Mailing Address : Blk 632 Veerasamy Road, #19-106, Singapore 200632

Website : <u>www.onsponge.com</u> For enquiries, please visit http://www.onsponge.com/contactus

All rights reserved.

No parts of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

While every care has been taken to compile this book, errors may still arise in the course of compilation and production. If you notice any error, kindly write to admin@onsponge.com so that we can review it. Similarly, you may wish to visit www.onsponge.com to look for any amendments on the books due to such errors.

ISBN 978-981-08-2052-7

Printed in Singapore by Mainland Press Pte Ltd.

Please be reminded that unauthorised photocopying of this book, in part or whole, is illegal.

+hinkingMath@onSponge[™] Series

Essential Problem Solving Skills (P3 to P6)

Conquer Problem Sums (P3 to P6)

PSLE Preparation (P6)

Visit www.onsponge.com to learn more about the +hinkingMath@onSponge series.

SpongeTips to Excel!

Solving problem sums can be enjoyable as the process helps you to:

- *Gain the knowledge and skills* to confidently solve problems in everyday life eg:
 - ✓ measuring your height and working out how much you've grown.
 - on car journeys playing number-plate games, adding and subtracting with road signs, thinking about speed by dividing distance by time.
 - ✓ at the shops weighing fruit and vegetables, budgeting with pocket money, working out the relative value of products by comparing prices and weight.
 - ✓ in the kitchen with weighing and measuring, and temperature and timings.
 - ✓ making models and origami shapes.
- Sharpen your thinking so you can outwit your friends in riddles, puzzles and games.
- Think creatively for more ways to tackle a problem that will amaze your family members and friends.

To become an excellent problem sum solver, it's really easy. Simply use BRISK!

B elieve in yourself	No problem is too difficult for anyone including you! It may be challenging but that's what makes it interesting. Imagine playing an easy computer gameyou will soon be bored! So brace up and tell yourself, "I can do it!"
R ead to understand	Never rush through a question even if it looks really easy because you might just miss the important point or fall into the trap set by the author/examiner (Yes, they do set traps!). Read every sentence of the entire problem until you understand and know what you are going to solve.
dentify key facts	All information found in the problem is important. It gives clues to help you solve the problem just like a detective would need clues to solve a mystery. Line by line as you read through, list the facts given in the problem to help guide and lead you to the solution.
S queeze and write	You need all the clues to solve the problem. So 'squeeze' out every possible clue from the problem sum and write them one at a time, point by point, onto the empty space provided. Do you know every correct clue/fact stated on the paper will score you points? So go on'squeeze' and write!
K eep questioning	For every fact you have written out, ask yourself, "Is there a computation here that I must make that will lead me closer to the solution?" If the answer is yes, then work it out, check the working and if it is accurate, you are one step closer to the solution. Else, move to the next fact and repeat the process. Before you know it, there's the solution! Once you have arrived at your solution, don't be in a hurry to move on. Take one more look to see if the answer is logically correct. Should the answer look illogical e.g. "There are 2½ boys in the class", then you will have to go back and repeat the steps of BRISK until you arrive at an answer that is logical based on the facts given.

Final Answers for P4 Conquer Problem Sums

Chapter 1 Whole Numbers

Unit '	1.1 – Divisibility	Test	
Qn 1	(a) 431 and 569	(b) 712	and 611
	(c) 342	(d) 324	and 521
	(e) 441 and 621		
Unit	1.2 – Divisor, Qu	iotient a	nd Remainder
Qn 1	Quotient = 616	Remair	nder = 5
Qn 2	Quotient = 279	Remair	nder = 2
Qn 3	Quotient = 664	Remair	nder = 4
Qn 4	77	Qn 5	986
Qn 6	942	Qn 7	455
Qn 8	1427	Qn 9	2 more
Qn 10	\$110	Qn 11	18 packets
Unit 1	.3 – Highest Co	mmon F	actor (HCF)
Qn 1	8	Qn 2	12
Qn 3	5	Qn 4	8
Qn 5	15	involvin	a Multiplication
and E	Division		
Qn 1	9	Qn 2	7
Qn 3	14	Qn 4	20
Qn 5	32	Qn 6	18
Qn 7	10		
Unit Facto	1.5 – Word Prob ors	lems inv	olving Common
Qn 1	(a) 8 bags		
	(b) 5 candy bars +	6 choco	late bars
Qn 2	(a) 6 bags	(b) 31 i	items
Qn 3	(a) 30 people	(b) 9 ite	ems
Qn 4	(a) 20 cm	(b) 20 t	tiles
Qn 5	(a) 30 cm	(b) 20 t	tiles
Qn 6	(a) 20 cm	(b) 20 s	smaller pieces
Unit	1.6 – Lowest Co	mmon N	lultiple (LCM)
Qn 1	19 October	Qn 2	8.13 p.m.
Qn 3	(a)11.01 p.m.	(b) 60 tim	ies
Qn 4	8	Qn 5	30
Qn 6	23 sweets	Qn / 2	26 chocolates
Qn 8	17 balloons	Qn 9	40
Qn 10		// . .	
Unit	1.7 – More Than anged Type I)	Less Ir	ian (External
Qn 1	69 sweets	Qn 2 1	165 marbles
Qn 3	\$1425	Qn 4 9	00 stickers
Qn 5	300 cookies	Qn 6	\$90
Unit Unch	1.8 – More Than anged Type II)	/Less Th	nan (External
Qn 1	48 boys	Qn 2	60 stickers
Qn 3	63 sweets	Qn 4	300 swimmers

Unit 1 Uncha	.9 – More Than/L anged Type III)	.ess Tha	an (External
Qn 1	240 chickens	Qn 2	96 cookies
Qn 3	45 egg tarts	Qn 4	54 men
Unit 1	.10 – Equal Stage	е (Туре	I - Beginning)
Qn 1	22 boys	Qn 2	27 cards
Qn 3	\$68	Qn 4	56 students
Qn 5	84 apples	Qn 6	108 boys
Unit 1	.11 – Equal Stage	е(Туре	II - End)
Qn 1	\$24	Qn 2	12 stickers
Qn 3	12 members	Qn 4	48 boys
Qn 5	65 oranges	Qn 6	91 marbles
Unit 1.	12 – Equal Stage	е (Туре	III - Internal Transfer)
Qn 1	L = \$140; I = \$560		
Qn 2	J = 36 marbles; D =	72 marl	bles
Qn 3	126 pies		
Qn 4	S = \$16; D = \$80		
Unit 1 than)	.13 – Multiple Qu	antities	(More than/Less
Qn 1	\$18	Qn 2	\$50
Qn 3	\$32	Qn 4	\$144
Qn 5	5 kg	Qn 6	\$72
Qn 7	\$34	Qn 8	\$24
Qn 9	\$30		
Unit 1	.14 – Number of	Units ar	nd Value of Units
Qn 1	20 plates	Qn 2	12 chickens
Qn 3	32 welders	Qn 4	30 girls
Qn 5	80 children	Qn 6	40 questions
Unit 1	.15 – Repeated I	dentity	(Type I)
Qn 1	26 stickers	Qn 2	\$1050
Qn 3	15 red balls	Qn 4	28 dolls
Qn 5	160 people	1	(* 11)
Unit 1	.16 – Repeated I	dentity	(Type II)
Qn 1 2	28 stickers	Qn 2	50 bottle caps
Qn 3 2	28 red balls	Qn 4	22 buttons
Qn 5 2	24 green balloons		
Unit 1.	17 – Repeated Ic	dentity (Type III)
Qn 1	200 cards	Qn 2	320 boys
Qn 3	220 green balls	Qn 4	84 stickers
Qn 5	44 sweets		
Chap	oter 2 Fractio	n	

Unit 2.1 – Addition & Subtraction of Fractions (Type I) Qn 1 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ Qn 2 (a) $\frac{4}{11}$ (b) 55 cm

Qn 3	(a) <u>1</u>	(b) 36 students
Qn 4	(a) $\frac{3}{7}$	(b) \$63
Qn 5	(a) <u>6</u> 13	(b) \$52
Qn 6	144 cm	

Unit 2. (Type	2 – Addition & Sub II)	traction	of Fractions
Qn 1	11 24	Qn 2	11 35
Qn 3	60 pies	Qn 4	240 cm
Qn 5	4000 m	Qn 6	609 apples
Unit 2. (Type	3 – Addition & Sub III)	traction	of Fractions
Qn 1	$\frac{1}{6}$ kg	Qn 2	<u>4</u> kg
Qn 3	1500 g	Qn 4	侈 kg
Unit 2.	4 – Part-Whole Re	lationsh	ip (Type I)
Qn 1	\$105	Qn 2	48 students
Qn 3	560 people	Qn 4	\$250
Qn 5	84 balls		
Unit 2.	5 – Part-Whole Rel	lationsh	ip (Type II)
Qn 1	500 pies	Qn 2	160 pages
Qn 3	540 fruits	Qn 4	300 stickers
Qn 5	48 students	Qn 6	50 cookies
Qn 7	450 chocolates	Qn 8	\$2660
Qn 9	4 boxes		
Unit 2.	6 – Part-Whole Rei	ationsh	ip (Type III)
Qn 1	(a) <u>9</u> 20	(b) \$40)
Qn 2	(a) $\frac{4}{21}$	(b) \$12	6
Qn 3	(a) <u>1</u>	(b) \$84	ļ
Qn 4	42 Pies	Qn 5	\$4620
Qn 6	280 Students		
Unit 2.	7 – Comparison of	Differer	nt Quantities
Qn 1	15kg	Qn 2	20cm
Qn 3	8 Sweets	Qn 4	\$400
Unit 2.	8 – Equal Stage (T	ype I)	
~ (20 Dama		

Qn 1	32 Pens	Qn 2	150 Boys
Qn 3	36 Cups	Qn 4	70 Blue Balls
Qn 5	100 Students	Qn 6	420 Muffins
Unit 2.9 – Equal Stage (Type II)			

		,
Qn 1	56 sweets	Qn 2 42 cookies
Qn 3	\$24	Qn 4 50 pebbles
Qn 5	60 books	

Unit 2	2.1 0 – Equal Stage	(Туре	III)	
Qn 1	\$306	Qn 2	42 girls	
Qn 3	30 pencils	Qn 4	36 men	
Qn 5	30 more	Qn 6	25 more	
Qn 7	120 English books	Qn 8	300 apples	
Qn 9	\$490	Qn 10	450 boys	
Unit 2	2.11 – External Unc	hangeo	d (Type I)	
Qn 1	20 square cookies	Qn 2	240 chickens	
Qn 3	140 cups	Qn 4	48 men	
Unit 2	2.1 2 – External Unc	hange	d (Type II)	
Qn 1	660 ml	Qn 2	24 children	
Qn 3	64 students	Qn 4	45 fruits	
Qn 5	240 marbles			
Unit 2	2.1 3 – Repeated Id	entity		
Qn 1	16 bananas	Qn 2	158 chocolates	
Qn 3	224 people	Qn 4	272 balls	
Chapter 3 Angles				

Unit 3.1 – Naming Angles Qn 1 ∠ABC;∠BCD Qn 2 ∠TUW;∠WXY Qn 3 ∠ACB;∠CDE Qn 4 ∠AEC;∠BDC Qn 5 ∠WXY;∠UTW Qn 6 ∠UYT;∠UWZ Qn 7 ∠AFE;∠EBC

Unit 3.2 – Measuring Angles

Qn 1	(a)∠a = 27°	(b)∠a = 130°
	(c)∠a = 87°	(d)∠a = 57°
	(e)∠a = 140°	(f)∠a = 102°

- Qn 2 ∠ABD = 49°;∠CBD = 131° ∠ABD + ∠CBD = 180°
- Qn 3 ∠EFH = 71°;∠GFH = 109° ∠EFH + ∠GFH = 180°
- Qn 4 ∠EFH = 73°;∠EFJ = 107° ∠EFH + ∠EFJ = 180°
- Qn 5 (a)∠DCE = 52°;∠ECB = 38° ∠DCE + ∠ECB = 90° (b)∠DCE = 34°;∠ECB = 56° ∠DCE + ∠ECB = 90° (c)∠DCA = 30°;∠ACB = 60° ∠DCA + ∠ACB = 90°
- Qn 6 ∠w = 80°;∠x = 140°;∠y = 26°;∠z = 68°
- Qn 7 ∠a = 317°;∠b = 128°;∠c = 130°;∠d = 67°

Unit 3.3 – Constructing Angles

Unit 3.4	 Fraction of Right 	Angles
Qn 1	(a) 180	(b) 90
	(c) 270	(d) 720
Qn 2	4 angles	
Qn 3	(a) 2	(b) 6
	(c) 3	
Qn 4	(a) 0	(b) 4
	(c) 3	(d) 2
	(e) 2	
Qn 5	(a) 2	(b)&(c)

Chapter 4 Decimals

Unit 4.1	 Identifying Decimal P 	laces
Qn 1	(a) tenths(c) thousandths(e) hundredths(g) tenths	(b) hundredths(d) ones(f) thousandths(h) thousandths
Qn 2	(a) 0.007; 7 thousandths (b) 0.04; 4 hundredths (c) 0.3; 3 tenths (d) 0.006; 6 thousandths	
Qn 3	 (a) 5.634 (c) 1.212 (e) 4.125 (g) 421.754 (i) 72.132 	(b)120.64 (d) 2.562 (f) 211.62 (h) 44.92 (j) 1.314
Unit 4.2	 Comparing and Order 	ring Decimals
Qn 1 0.6 Qn 2 95. Qn 7 13.4 Qn 8 0.2 Qn 9 0.3 Qn 10 0.5 Qn 11 12. Qn 12 26.	5 Qn 3 45.327 59 Qn 4 29.102 05 5, 0.254, 0.42 04, 0.340, 0.403 71, 0.715, 0.751 415, 12.421, 12.541 721, 27.261, 27.621	Qn 5 12.124 Qn 6 124.05

Qn 13 16.457, 16.475, 16.754 Qn 14 81.542, 105.524, 108.452

Unit 4.3.1 – Converting Fractions into Decimals (Tenths)			
Qn 1	0.6	Qn 2	0.8
Qn 3	1.7	Qn 4	2.1
Qn 5	5.2	Qn 6	6.0
Qn 7	0.2	Qn 8	0.5
Qn 9	1.3	Qn 10	1.7
Qn 11	1.8	Qn 12	2.6
Unit 4.3.2 – Converting Fractions into Decimals (Hundredths)			

· · ·			
Qn 1	0.06	Qn 2 0.25	
Qn 3	0.40	Qn 4 1.24	
Qn 5	0.28	Qn 6 0.35	
Qn 7	1.04	Qn 8 3.02	
Qn 9	5.2	Qn 10 4.25	
Qn 11	0.75	Qn 12 0.48	
Qn 13	1.68	Qn 14 3.4	
Qn 15	1.34	Qn 16 2.48	

Unit 4. (Thous	3.3 – Conve andths)	erting Fractions	into Decimal	
Qn 1	0.006	Qn 2	0.008	
Qn 3	0.042	Qn 4	0.035	
Qn 5	0.482	Qn 6	0.125	
Qn 7	1.234	Qn 8	4.256	
Qn 9	0.006	Qn 10	0.012	
Qn 11	0.035	Qn 12	0.324	
Qn 13	0.525	Qn 14	4.256	
Qn 15	2.032	Qn 16	6.25	
Qn 17	2.75	Qn 18	5.375	
Qn 19	6.625	Qn 20	5.192	

Unit 4.4 – Rounding

Qn 1	34	Qn 2	9
Qn 3	2	Qn 4	12
Qn 5	13	Qn 6	34
Qn 7	24.5	Qn 8	84.1
Qn 9	22.0	Qn 10	15.3
Qn 11	9.9	Qn 12	5.5
Qn 13	37.82	Qn 14	15.05
Qn 15	5.21	Qn 16	31.35
Unit 4.5 – Converting Decimals into Fractions			

Onit	no convoluing bo	
Qn 1	24 25	Qn 2 43 50
Qn 3	$12\frac{3}{5}$	Qn 4 42 $\frac{41}{50}$
Qn 5	$3 \frac{1}{4}$	Qn 6 8 <u>4</u> 25
Qn 7	37 1 <u>01</u> 1 <u>2</u> 5	Qn 8 1121 <u>73</u> 500
Qn 9	2 <u>12</u> 25	Qn 10 134 <u>9</u> 500

Qn 11	1 <u>21</u> 25	Qn 12 -	$45\frac{4}{5}$
Qn 13	4 <u>9</u> 20	Qn 14	$4\frac{6}{25}$
Unit 4	.6 – Addition	and Subtract	ion of Decimals
On 1	12 20	0.0	07.10

QILI	12.29	Qn 2	27.12
Qn 3	8.72	Qn 4	2.64
Qn 5	85.8	Qn 6	24.74
Qn 7	146.85	Qn 8	237.97
Qn 9	95.31	Qn 10	173.9
Qn 11	62	Qn 12	12.49
Qn 13	56.86	Qn 14	74.28
Qn 15	36.54	Qn 16	15.2
Qn 17	\$23.90	Qn 18	\$9.50
Qn 19	\$9.60		

Unit 4.7 – Multiplication of Decimals

Qn 1	\$2764	Qn 2	\$3.78
Qn 3	\$487.80	Qn 4	211.36 m
Qn 5	8.75/	Qn 6	\$32.80
Qn 7	\$92	Qn 8	\$40.90

Unit 4.8 – Division of Decimals

Qn 1	1.6	Qn 2	1.5
Qn 3	6.25	Qn 4	2.5
Qn 5	\$24.50	Qn 6	\$5.25
Qn 7	24.2 kg	Qn 8	\$5.80
Qn 9	\$9.80		

Unit 4.9 – Number Patterns on Decimals

Qn 1

1 0.326 0.0326 0.00326 32.6 326 3260 2 2.345 0.2345 0.02345 234.5 2345 23450 3 0.034 0.0034 0.00034 3.4 34 340 4 0.2012 0.02012 20.12 201.2 2012 5 6.34 0.634 0.0634 634 6340 63400

Qn 2

(a) 2.3, 2.8	(b) 3.1, 3.9
(c) 14.04, 14.08	(d) 5.5, 6.1
(e) 6.20, 6.30	(f) 8.30, 8.55
(g) 4.29, 4.47	
Qn 3	
(a) 1.41, 1.45	(b) 2.65, 2.05
(c) 3.31, 3.41	(d) 14.5, 13.3
(e) 3.30, 3.45	(f) 13.8, 9.3
(g) 2.64, 4.14	

Chapter 5 Area and Perimeter

	•
Unit Side	5.1 – Finding Area and Perimeter with Given s
Qn 1	 (a) Area = 21 cm²; Perimeter = 20 cm (b) Area = 52 cm²; Perimeter = 34 cm (c) Area = 216 cm². Perimeter = 60 cm
Qn 2	(a) Area = 49 cm^2 ; Perimeter = 28 cm
	(b) Area = 225 cm ² ; Perimeter = 60 cm
	(c) Area = 169 cm ² ; Perimeter = 52 cm
Unit Perii	5.2 – Finding Sides with Given Area or meter
Qn 1	 (a) Breadth = 8 cm; Perimeter = 34 cm (b) Breadth = 10 cm; Perimeter = 50 cm (c) Breadth = 21 cm; Perimeter = 50 cm (d) Breadth = 15 cm; Perimeter = 50 cm
Qn 2	 (a) Breadth = 3 cm; Perimeter = 12 cm (b) Breadth = 8 cm; Perimeter = 32 cm (c) Breadth = 6 cm; Perimeter = 24 cm (d) Breadth = 5 cm; Perimeter = 20 cm
Qn 3	 (a) Breadth = 6 cm; Area = 36 cm² (b) Breadth = 11 cm; Area = 121 cm² (c) Breadth = 16 cm; Area = 256 cm² (d) Breadth = 14 cm; Area = 196 cm²
Unit Figu	5.3 – Area and Perimeter of Composite res (Basic)

•	
0 . 1	$Area = 106 \text{ am}^2$; $Parimeter = 72 \text{ am}$
Qni	Area – 196 cm², Perimeter – 72 cm
Qn 2	Area = 184 cm ² ; Perimeter = 84 cm
Qn 3	Area = 160 cm ² ; Perimeter = 56 cm
Qn 4	Area = 260 cm ² ; Perimeter = 72 cm
Qn 5	Area = 124 cm ² ; Perimeter = 48 cm
Qn 6	Area = 292 cm ² ; Perimeter = 80 cm

Unit 5.4 – Area and Perimeter with Proportional Figures Qn 1 48cm Qn 2 40cm Qn 3 24cm Qn 4 30cm

Qn 5 56cm

Unit 5.5 – Area and Perimeter of Squares Using Guess and Check

Qn 1	49m²	Qn 2	64m²
Qn 3	63m²	Qn 4	144m²
Qn 5	132m²	Qn 6	144cm ²
Qn 7	64cm ²	Qn 8	44cm
Qn 9	66cm		

Unit 5.6 – Area and Perimeter of Composite Figures (Intermediate)						
Qn 1	72m²	Qn 2	64m²			
Qn 3	112m²	Qn 4	36m²			
Qn 5	1300m²	Qn 6	34m			
Qn 7	34m	Qn 8	30m²			
Qn 9	28m²					
Qn 10	Area = 264m ² ; Perimeter = 84m					
Qn 11	Area = 764m ² ; Perimeter = 156cm					
Qn 12	Area = 248m ² ; Perimeter = 80m					
Qn 13	Area = 428m ² ; P	erimeter	= 114m			

Unit 5.7 – Area Using Cut and Paste

Qn 1	25cm ²	Qn 2	21cm ²
Qn 3	21cm ²	Qn 4	22cm ²
Qn 5	16cm ²	Qn 6	18cm ²
Qn 7	18cm ²	Qn 8	20cm ²

Chapter 6 Graphs

Unit	6.1	 Table and Bar 	Gra	ohs				
Qn 1	(a)	Number of boys: 12; 24; 18; 24 Number of girls: 24; 22; 14; 18 Total number of pupils: 36; 36; 32; 42						
	(b)	Class 5B	(c)	78				
	(d)	78	(e)	29				
Qn 2	(a)	12;14; 18; 9	(b)	30				
	(c)	2	(d)	7				
Qn 3	(a)	Number of swimn Number of non-sv	ners: : vimm	32; 26; 34; 28 ers: 8, 14, 6, 12				
	(b)	40	(c)	6				
	(d)	6						
Qn 4	(a)	1; 18; 20; 25; 23;	18; 1	7				
	(b)	2 p.m.	(c)	6 p.m.; 8 p.m.				
	(d)	12 p.m.; 2 p.m.	(e)	13°C				
Qn 5	(a)	March: \$9000; \$7 April: \$7000; \$900 May: \$16000; \$13	000; \$ 00; \$2 3000;	\$12000; \$8000 22000; \$10000 \$7000; \$12000				
	(b)	Mike	(c)	Imran				
	(d)	\$131000						
Qn 6	(a)	2022: 12; 11; 4; 5 2023: 10; 8; 6; 7;	i; 14 11					
	(b)	2022	(c)	Feb 2023				
	(d)	Jan 2022	(e)	56 days				
Unit	6.2	 Interpreting Lir 	ne Gi	raphs				
Qn 1	(a) (c) (e)	12 p.m. 13 4	(b) (d)	4 22				
Qn 2	(a) (c)	\$16000 \$20000	(b)	2007				
Qn 3	(a) (c)	48kg 38kg	(b) (d)	April or May June				

Qn 4	(a)	100	(b)	60
	(c)	12	(d)	22
Qn 5	(a)	75	(b)	14
	(c)	Friday	(d)	33
Qn 6	(a) (b)	37.7°C 11 a.m., 2 p.m., a	nd 4 j	o.m.

(c) 9 a.m. to 10 a.m., 2 p.m. to 3 p.m.

(d) 7 hours, from 10 a.m. to 5 p.m.

Unit 6.3 – Reading and Interpreting Pie Charts

Qn 1	(a)10	(b) 12	(c) 40 (d) $\frac{1}{5}$
Qn 2	(a)80	(b)35	(c) 15
Qn 3	(a)240	(b)84	(c) $\frac{1}{10}$
Qn 4	(a) $\frac{3}{20}$	(b) $\frac{3}{20}$	(c) 500 (d) 100
Qn 5	(a) 16	(b) 4	(c) 20 (d) 80

Chapter 7 Review Questions

Unit	/ – H	Review	Que	est	ions	5	
Qn 1	\$14		Qn	2	67°		
Qn 3	\$45						
Qn 4	(a)	See ful	l sol	utio	ns	(b)	22 chairs
	(c)	42 chai	rs			(d)	Figure 63
Qn 5	\$40		Qn	6	\$38	4	
Qn 7	\$320)	Qn	8	\$51	0	
Qn 9	117	more	Qn	10	576	icm ²	
Qn 11	510 g	girls	Qn	12	11	<u>1</u> kg	
Qn 13	\$80						
Qn 14	(a) 3	2 pupils		(b)) 104	4 tabl	es
Qn 15	33 tio	ckets	Qn	16	380	mar	bles
Qn 17	\$3.5	0	Qn	18	45 s	stam	os
Qn 19	1280	cm	Qn	20	\$31	6	
Qn 21	A=72	2 marks;	C=9	92 r	nark	s; D	=83 marks
Qn 22	S=8(0 cookie	s; J=	-12	0 co	okies	; B=72 cookies
Qn 23	\$144	40	Qn	24	350)g	
Qn 25	1.05	kg					
Qn 26	(a) 3	8 pupils		(b)	232	2 swe	ets
Qn 27	(a) 3	6 tiles		(b)) 84	tiles	
Qn 28	137	stickers	Qn	29	\$3		
Qn 30	\$125	5	Qn	31	\$64	ļ	
Qn 32	(a) 2	0 footba	lls	(b)	\$67	75	
Qn 33	520	tarts	Qn	34	16	oies	
Qn 35	66 si	tickers	Qn	36	140	app	es
Qn 37	34 m	nore	Qn	38	125	icm	
Qn 39	4 mc	ore	Qn	40	195	i coin	S

I

P4 Full Solutions

(c)342

Note: In all solutions, u represents Units

Chapter 1 Whole Numbers

Unit 1.1 – Divisibility Test

Qn 1	
(a)431 and 569	(b)712 and 611
(d)324 and 521	(e)441 and 621

Unit 1.2 – Divisor, Quotient and Remainder Qn 1 Qn 2 Qn 3 664 616 279 9/2513 7 4317 8 5316 42 <u>- 18</u> 48 11 71 51 -7 <u>- 63</u> 48 47 83 36 <u>- 42</u> 32 <u>– 81</u> 5 2 4 Quotient = 616 Quotient = 279 Quotient = 664 Remainder = 5 Remainder = 2 Remainder = 4 Qn 4 Qn 5 12 × 6 + 5 = 72 + 5 = 77 123 × 8 + 2 = 984 + 2 = 986 Qn 6 On 7 104 × 9 + 6 = 936 + 6 = 942 113 × 4 + 3 = 452 + 3 = 455 On 8 On 9 203 × 7 + 6 = 1421 + 6 $14 \times 8 + 6 = 118$ $12 \times 10 = 120$ = 1427 120 - 118 = 2 more chairs

Qn 10

 $434 \div 8 = 54$ remainder 2 Total she needs = 55 packets $55 \times $2 = 110 Miss Tan would need \$110.

Qn 11

40 × 6 = 240 240 ÷ 14 = 17 remainder 2 Total packets needed = 18 packets

Unit 1.3 – Highest Common Factor (HCF)

Qn 1

actors of 24: 1, 2, 3, 4, 6, 8, 12, 24 Factors of 40: 1, 2, 4, 5, 8, 10, 20, 40 Common factors of 24 and 40 are 1, 2, 4 and 8. Highest common factor of 24 and 40 is 8.

Qn 2

Factors of 36:1,2,3,4,6,9,12,18,36Factors of 60:1,2,3,4,5,6,10,12,15,20,30,60Common factors of 36 and 60 are 1,2,3,4,6 and 12. Highest common factor of 36 and 60 is 12.

Qn 3

Factors of 45: 1, 3, 5, 9, 15, 45 Factors of 80: 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 Common factors of 45 and 80 are 1 and 5. Highest common factor of 45 and 80 is 5.

Qn 4 Factors of 16: 1, 2, 4, 8, 16 Factors of 40: 1, 2, 4, 5, 8, 10, 20, 40 Common factors of 16 and 40 are 1, 2, 4 and 8. Highest common factor of 16 and 40 is 8.

Qn 5

Factors of 90: 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 Factors of 75: 1, 3, 5, 15, 25, 75 Common factors of 75 and 90 are 1, 3, 5 and 15. Highest common factor of 75 and 90 is 15.

Unit 1.4 – L	Distribution in Division	volving Multiplic	ation and
Qn 1 9	Qn 2 7	Qn 3 14	Qn 4 20
Qn 5 32	Qn 6 18	Qn 7 10	
Unit 1.5 – I	Nord Problen	ns on Common	Factors
Qn 1 2 40 48 2 20 24 2 10 12 5 6	(a) Maximu (b) In each	um number of bag bag = 5 candy b 6 chocola	gs = 2 × 2 × 2 = 8 bags ars + ate bars
Qn 2 2 36 60 3 18 30 6 10	0 90 45 (a) Maxin = 2 × = 6 ba (b) In eac	num number of go 3 gs th bag = 6 packets +10 bars o <u>+15 packet</u> 31 items	odie bags of sweets f chocolates ts of biscuits
Qn 3 2 60 90 3 30 45 5 10 15 2 3	$\begin{array}{c c} \hline 120 \\ \hline 60 \\ \hline 20 \\ \hline 34 \\ \hline \hline $	al people catered t 2 × 3 × 5 0 people al items each perso 2 sticks of satays 5 cups of jelly 4 cupcakes	o on can take
Qn 4 2 80 1 2 40 5 20 4	(a) Larg 50 = 2 50 = 20 25 (b) Nun 5	test possible lengtl × 2 × 5 0 cm nber of tiles neede	h of each tile d = 4 × 5 = 20 tiles
Qn 5 2 120 3 60 5 20 4	150 (a) Lar 75 of t 25 5 (b) Max	gest possible leng he tile = 2 × 3 × 5 = 30 cm kimum number of t	th of each side iles = 4 × 5 = 20 tiles
Qn 6 10 80 1 2 8 4	(a) <u>40 180</u> <u>14 18</u> 7 9 (b)	Greatest possible = 10 × 2 = 20 cm Smaller pieces =	e length 4 + 7 + 9 = 20

2u = 32 + 14 = 46 1u = 23

Number of sweets Janice had at first = 23 × 3 = 69

Janice had 69 sweets at first.

Qn 2

2u = 150 - 120 = 30

1u = 30 ÷ 2 = 15 Number of marbles Dennis had at first = 15 + 150

= 165 Dennis had 165 marbles at first

= \$90

Page 262

+hinkingMath[™]

Page 265

Page 266

Unit 1.14 – Number of Units and Value of Units Qn 1 No. x Value (\$) = Total cost Plates 4u x 7 = 28u = <u>4</u> 32u Cups 1u x 4 32u =\$160 1u =\$160 ÷ 32 = 5 Total number of plates = 4u = 4 × 5 = 20 Qn 2 No. × Value = Total cost Horses 3u x 4 = 12u Chickens 1u 2 = <u>2u</u> 14u × 14u = 168 1u = 168 ÷ 14 = 12 Total number of chickens = 1u = 12 Qn 3 No. × Value (\$) = Total cost Welders 4u × 35 Painters 1u × 20 = 140u = <u>20u</u> 160u Painters 1u 160u = 1280 1u = 1280 ÷ 160 = 8 Total number of welders employed = 4u = 4 × 8 = 32 Qn 4 No. x Value = Total balloons 29u = 174 1u = 174 + 29 = 6 Number of girls = 5u = 5 × 6 = 30 Qn 5 No. × Value (\$) = Total Adults 1u × 8 = 8u Children 20u × 5 = <u>100u</u> 108u 108u = 432 1u = 432 ÷ 108 = 4 Total number of children = 20u = 20 × 4 = 80 Qn 6 No. x Value (points) = Total Correct Qn 5u × 3 = 15u (-) 2 Wrong Qn 1u × = (-) <u>2u</u> 13u Difference 13u = 104 1u = 104 ÷ 13 = 8 Number of questions answered correctly = 5u = 5 × 8 = 40

= 44

Chapter 2 Fraction Unit 2.1 – Addition & Subtraction of Fractions (Type I) Qn 1 $(a) \quad 1 - \frac{5}{12} - \frac{1}{12} = \frac{6}{12}$ $=\frac{1}{2}$ He gave $\frac{1}{2}$ of his sweets in all. (b) $1 - \frac{1}{2} = \frac{1}{2}$ He had $\frac{1}{2}$ of his sweets left. Qn 2 $1 - \frac{3}{11} - \frac{4}{11} = \frac{4}{11}$ $\frac{4}{11}$ pole = 20cm (a) $\frac{4}{11}$ of the pole was painted green. $\frac{1}{11}$ pole = 20cm + 4 = 5cm (b) Length of the pole = 11 × 5cm = 55 cm Qn 3 (a) $1 - \frac{2}{9} - \frac{4}{9} = \frac{3}{9}$ $=\frac{1}{3}$ 1/3 of the class likes soccer. (b) Total students in the class = 3 × 12 = 36 Qn 4 $1 - \frac{1}{7} - \frac{3}{7} = \frac{3}{7}$ (a) She did not spend $\frac{3}{7}$ of her money. $\frac{3}{7}$ total = \$27 $\frac{1}{7}$ total = \$27 ÷ 3 = \$9 (b) Total at first = 7 × \$9 = \$63 Qn 5 $1 - \frac{4}{13} - \frac{3}{13} = \frac{6}{13}$ (a) She had $\frac{6}{13}$ of her money left. $\frac{6}{13}$ total = \$24 $\frac{1}{13}$ total = \$24 + 6 = \$4 (b) Total at first = 13 × \$4 = \$52 Qn 6 $\frac{7}{12} - \frac{5}{12} = \frac{2}{12}$ = 1 6 $\frac{1}{6}$ ribbon = 24 cm Total at first = 6 × 24 cm = 144 cm

Unit 2.2 – Addition & Subtraction of Fractions (Type II) Qn 1 $\frac{\frac{1}{3} + \frac{1}{8} = \frac{8}{24} + \frac{3}{24}}{= \frac{11}{24}}$ He spent $\frac{11}{24}$ of his money. Qn 2 $1 - \frac{2}{5} - \frac{2}{7} = 1 - \frac{14}{35} - \frac{10}{35}$ $= \frac{11}{35}$ She had $\frac{11}{35}$ of her salary left. Qn 3 $1 - \frac{1}{6} - \frac{1}{4} = 1 - \frac{2}{12} - \frac{3}{12}$ $= \frac{7}{12}$ $\frac{7}{12} \text{ total} = 35 \text{ pies}$ $\frac{1}{12} \text{ total} = 35 \text{ pies} + 7$ 12 = 5 pies Total at first = 12 x 5 pies = 60 pies Qn 4 $1 - \frac{1}{4} - \frac{3}{8} = 1 - \frac{2}{8} - \frac{3}{8}$ $=\frac{3}{8}$ $\frac{3}{8}$ total = 90 cm $\frac{1}{8}$ total = 90 cm + 3 = 30 cm Original length = 8 × 30 cm = 240 cm Qn 5 $1 - \frac{1}{4} - \frac{2}{5} = 1 - \frac{5}{20} - \frac{8}{20}$ $= \frac{7}{20}$ $\frac{7}{20}$ total = 1400 m $\frac{1}{20}$ total = 1400 m + 7 = 200 m Entire track = 20 × 200 m = 4000 m Qn 6 $1 - \frac{1}{3} - \frac{3}{7} = 1 - \frac{7}{21} - \frac{9}{21}$ $= \frac{5}{21}$ $\frac{5}{21}$ total = 145 $\frac{1}{21}$ total = 145 + 5 = 29 Total apples at first = 21 × 29 = 609

+hinkingMath™

Page 269

Qn 4 $\frac{3}{4}$ of men $=\frac{1}{7}$ of women <u>3</u> 4 $=\frac{3}{21}$ of women of men = 4u Men Women = 21u Total = 4u + 21u = 25u 25u = 225 1u = 225 + 25 = 9 Total men = 4u = 4 × 9 = 36 Qn 5 3 $=\frac{2}{3}$ of girls of boys 4 6 of boys <u>6</u> of girls = 9 Boys = 8u Girls = 9u Total = 8u + 9u =17u 17u = 510 1u = 510 ÷ 17 = 30 Difference between boys and girls = 1u = 30 Qn 6 $\frac{2}{5}$ of blue $=\frac{3}{5}$ of red 6 15 of blue $= \frac{6}{10}$ of red Blue = 15u Red = 10u Total = 15u + 10u = 25u 25u = 125 1u = 125 ÷ 25 = 5 Difference between blue and red = 5u = 5 × 5 = 25 Qn 7 $\frac{3}{4} \text{ of english } = \frac{2}{7} \text{ of chinese}$ $\frac{6}{8} \text{ of english } = \frac{6}{21} \text{ of chinese}$ English = 8u Chinese = 21u Total = 8u + 21u = 29u 29u = 435 1u = 435 ÷ 29 = 15 English total = 8u = 8 × 15 = 120

Unit 2.12 – External Unchanged (Type II) Qn 1 At first End Orange Orange = 3u = 1u × 3 = 3u Water = 4u × 3 = 7u Water = 12u Increase in water used = 12u - 7u = 5u 5u = 1100 ml 1u = 1100 ml ÷ 5 = 220 ml Amount of syrup used = 3u = 3 × 220 ml = 660 mℓ Qn 2 At first End Children = 3u × 4 Children = 4u × 3 = 12u = 12u Adults = 4u × 4 = 5u × 3 Adults = 16u = 15u Decrease in adults = 16u - 15u = 1u 1u = 2 Number of children in the bus = 12u = 12 × 2 = 24 Qn 3 At first End Boys = 4u × 3 = 3u × 4 Boys = 12u = 12u Girls Girls = 5u × 4 = 3u × 3 = 9u = 20u Increase in girls = 20u - 9u = 11u 11u = 22 1u = 22 ÷ 11 = 2 Number of students in the end = 32u = 32 × 2 = 64 Qn 4 At first End (conditional) Oranges = 1u × 3 Oranges = 3u = 3u = 2u × 3 Pears Pears = 2u = 6u Decrease in pears = 6u - 2u = 4u 4u = 20 1u = 20 ÷ 4 = 5 Total = 3u + 6u = 9u $= 9 \times 5$ = 45 Qn 5 At first End Red = 1u × 5 Red = 3u × 4 = 5u = 12u Blue = 3u × 3 Blue = 5u × 4 = 20u = 9u Increase in red = 6u - 5u = 1u

1u = 12 Total = 5u + 15u = 20u = 20 × 12 = 240 Unit 2.13 – Repeated Identity Qn 1 Banana = 1u × 2 Chocolate = 5u × 2 Banana = 2u } = 10u 15u Chocolate = 2u = 3u Banana Blueberry Blueberry = 3u 15u = 120 1u = 120 + 15 = 8 Total number of bananas = 2u = 2 × 8 = 16 Qn 2 Serene = 4u × 4 = 7u × 4 = 16u Melvin Serene Melvin = 28u } 79u Melvin = 4u × 7 Esther Esther = 5u × 7 Difference between Serene and Esther = 35u - 16u = 19u 19u = 38 1u = 38 ÷ 19 = 2 Total number of chocolates = 79u $= 79 \times 2$ = 158 Qn 3 Boys $= 10 \times 5$ Girls = 3u × 5 Boys = 5u Girls = 15u 28u Adults = 2u × 4 Adults = 8u Children = 5u × 4 Difference between adults and boys = 8u - 5u = 3u 3u = 24 1u = 24 ÷ 3 = 8 Total number of people = 28u = 28 × 8 = 224 Qn 4 Red = 3u × 3 Blue = 5u × 3 Red = 9u Blue = 15u 34u Green = 2u × 5 Green = 10u Blue = 3u × 5 Difference between green and red balls = 10u - 9u = 1u 1u = 8Total number of balls = 34u = 34 × 8 = 272

Page 276

Chapter 3 Angles						
On 1	vanning Angi	On 2				
∠ABC	∠BCD	∠TUW	∠WXY			
Qn 3 ∠ACB	∠CDE	Qn 4 ∠AEC	∠BDC			
Qn 5		Y				
(a) ∠WXY						
(b) ∠UTW		ð× -				
		LT				
	W					
On 6						
(a) ∠UYT		<u>></u>	Z			
(b) ∠UWZ		\sim				
()		\land				
		/				
			7			
			<u> </u>			
Qn 7	0					
(a) ∠AFE		Å				
(b) ∠EBC						
.,		Χ λв				
		$/ \sqrt{A}$				
	/	$\langle \rangle$				
		<pre> F \</pre>	\			
	E					
Unit 3.2 – N	leasuring A	ngles	6			
Qn 1						
(a) ∠a = 27°	((b) ∠a = <i>130</i> °				
(c) ∠a = 87°	((d) ∠a = 57°				
(e) ∠ABC =	140°	(f) ∠XYZ = 102°				
Qn 2 ∠ABD = 49°	∠CBD = 1	/31° ∠ABD +	∠CBD = 180°			
Qn 3			0511 (00)			
ZEFH = 71°	ZGFH = 1	109° ZEFH+	ZGFH = 180*			
Qn 4 ∠EFH = 73°	∠EFJ = 10	07° ∠EFH +	∠EFJ = <i>18</i> 0°			
Qn 5						
(a) ∠DCE = ∠DCE +	= 52° + ∠ECB = 90°	∠ECB = 38°				
(b) ∠DCE = ∠DCE =	= 34° ⊦ ∠ECB = 90°	∠ECB = 56°				
(c) ∠DCA ∠DCA	= 30° + ∠ACB = 90′	∠ACB = 60°				
Qn 6						
∠w = 80°	∠x = 140°	∠y = 26°	∠z = 68°			
Qn 7 ∠a = 317°	∠b = 128°	∠c = 130°	∠d = 67°			

Chapter 4 Decimals

Unit 4.1 – Identifying Decimal Places					
Qn 1					
(a) tenths	(b) hundredths				
(c)thousandths	(d) ones				
(e) hundredths	(f) thousandths				
(g) tenths	(h) thousandths				
Qn 2					
(a) 0.007 / 7 thousand	dths (b) 0.04 / 4 hundredths				
(c)0.3 / 3 tenths	(d) 0.006 / 6 thousandths				

Qn 3 (a) 5 + 0.6 + 0.03 + 0.004 = 5.634(b) 120 + 0.6 + 0.04 = 120.64(c) 1.2 + 0.012 = 1.212(d) 2.5 + 0.05 + 0.012 = 2.562(e) 4.0 + 0.12 + 0.005 = 4.125(f) 210 + 1.2 + 0.42 = 211.62(g) 420 + 1.7 + 0.054 = 421.754(h) 42 + 2.8 + 0.12 = 44.92(i) 72 + 0.13 + 0.002 = 72.132(j) 1.29 + 0.024 = 1.314

Unit 4.2	2 – Compa	ring and Orderii	ng Decimals
Qn 1	0.65	Qn 2 95.59	Qn 3 45.327
Qn 4	29.102	Qn 5 12.124	Qn 6 124.05
Qn 7	13.405	Qn 8 0.25, 0.254	, 0.42
Qn 9	0.304, 0.34	0, 0.403	
Qn 10	0.571, 0.71	5, 0.751	
Qn 11	12.415, 12.	421, 12.541	
Qn 12	26.721, 27.	261, 27.621	
Qn 13	16.457, 16.	475, 16.754	
Qn 14	81.542, 105	5.524, 108.452	

Unit 4.3.1 – Converting Fractions into Decimals (Tenths)							
Qn 1	0.6	Qn 2	0.8	Qn 3	1.7	Qn 4	2.1
Qn 5	5.2	Qn 6	6.0	Qn 7	0.2	Qn 8	0.5
Qn 9	1.3	Qn 10	1.7	Qn 11	1.8	Qn 12	2.6
Unit 4 (Hune	Unit 4.3.2 – Converting Fractions into Decimals (Hundredths)						
Qn 1	0.06	Qn 2	0.25	Qn 3	0.40	Qn 4	1.24
Qn 5	0.28	Qn 6	0.35	Qn 7	1.04	Qn 8	3.02
Qn 9	5.2	Qn 10	4.25	Qn 11	0.75	Qn 12	0.48
Qn 13	1.68	Qn 14	3.4	Qn 15	1.34	Qn 16	2.48

Unit 4	.3.3 – Con	verting	Fractions i	nto Dec	imals
(Thou	sandths)				
Qn 1	0.006	Qn 2	0.008	Qn 3	0.042
Qn 4	0.035	Qn 5	0.482	Qn 6	0.125
Qn 7	1.234	Qn 8	4.256	Qn 9	0.006
Qn 10	0.012	Qn 11	0.035	Qn 12	0.324
Qn 13	0.525	Qn 14	4.256	Qn 15	2.032
Qn 16	6.25	Qn 17	2.75	Qn 18	5.375
Qn 19	6.625	Qn 20	5.192		

Unit 4	.4 – Roι	ınding					
Qn 1	34	Qn 2	9	Qn 3	2	Qn 4	12
Qn 5	13	Qn 6	34	Qn 7	24.5	Qn 8	84.1
Qn 9	22.0	Qn10	15.3	Qn11	9.9	Qn12	5.5
Qn 13	37.82	Qn14	15.05	Qn15	5.21	Qn 16	31.35

01111 4.5	– Conventing Dec	amais into i	Fractions
Qn 1	$\frac{96}{100} = \frac{24}{25}$	Qn 2	43 50
Qn 3	$12\frac{16}{10} = 12\frac{3}{5}$	Qn 4	42 ⁴¹ / ₅₀
Qn 5	3 ¹ / ₄	Qn 6	8 4 25
Qn 7	37 <u>101</u> 125	Qn 8	$112\frac{173}{500}$
Qn 9	2 ¹² / ₂₅	Qn 10	134 <mark>9</mark> 20
Qn 11	1 ²¹ /25	Qn 12	45 4/5
Qn 13	4 9 20	Qn 14	4 6 25

Unit 4	.6 – Addition and Su	btraction of Decimals
Qn 1	12 + 0.25 + 0.04 = 12.2	29
Qn 2	26 + 0.8 + 0.32 = 27.12	2
Qn 3	8 + 0.2 + 0.52 = 8.72	
Qn 4	2 + 0.4 + 0.24 = 2.64	
Qn 5	0.9 + 84.9 = 85.8	Qn 6 0.24 + 24.5 = 24.74
Qn 7	146.85	Qn 8 237.97
Qn 9	95.31	Qn 10 173.9
Qn 11	63.2 - 1.2 = 62	Qn 12 12.8 – 0.31 = 12.49
Qn 13	56.86	Qn 14 74.28
Qn 15	36.54	Qn 16 15.2
Qn 17		
Amoun	t of change received = \$ = \$	\$50.00 - \$18.30 - \$7.80 \$23.90
Qn 18		
Amoun	t short of = \$85 - \$23.50 = \$9.50) - \$30.20 - \$21.80
Qn 19		
Amoun	t left = \$20 - \$4.50 - \$3.2	20 - \$2.70
Unit 4	= \$9.60 .7 – Multiplication of	Decimals
Qn 1	Amount received = 8 × = \$2	\$345.50 764
Qn 2	Cost of parcel = 3 × \$1 = \$3.78	.26
Qn 3	Amount paid = 9 × \$54 = \$487.8	4.20 0
Qn 4	Total length of cloth = =	8 × 26.42m 211.36 m
Qn 5	Amount of water store	d = 7 × 1.25ℓ = 8.75 ℓ
Qn 6	Changed received = \$ = \$	100 – \$8.40 × 8 3 32.80
Qn 7	Cost of bag = 4 × \$18 = \$73.60	.40
	Total cost = \$73.60 + 5 = \$92	\$18.40
Qn 8	8 cups cost = 8 × \$2. = \$18.40	30
	5 plates cost = \$4.50	× 5
	- \$22.5 Total cost = \$18.40 + = \$40.90	\$22.50

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Unit	4.8 – D	ivision	of Deci	imals			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Qn 1	1.6	Qn 2	1.5	Qn 3 6	.25	Qn 4	1 2.5
$\frac{-3.0}{.0} \frac{-2.0}{.0} \qquad \frac{-8}{2.0} \qquad \frac{-4.0}{.0}$ $\frac{-2.0}{.0}$ Qn 5 Amount paid daily = \$196 + 8 = \$24.50 Qn 6 Cost of each packet = 145.2 kg + 6 = 24.2 kg Qn 8 2 magazines = 2 × \$4.50 = \$9 \$9 + \$6.20 = \$15.20 6 pens = \$50 - \$15.20 = \$34.80 1 pen = \$34.80 + 6 = \$5.80 Qn 9 3 calculators = 3 × \$15.50 = \$46.50 \$46.50 + \$4.50 = \$51 5 towels = \$100 - \$51 = \$49 1 towel = \$49 + 5 = \$9.80 Unit 4.9 - Number Fatterns on Decimals Qn 1 No. Number +10 +100 +1000 ×10 ×100 ×100 1000 Eg 3.2 0.326 0.0326 0.00326 32.6 3260 3200 1 3.26 0.326 0.00326 32.6 3265 3260 2 23.45 2.345 0.2345 0.02345 234.5 2345 23450 3 0.34 0.034 0.0034 0.0034 3.4 34 340 4 2.012 0.2012 0.02012 0.002012 20.12 201.2 2012 5 63.4 6.34 0.634 0.0634 634 6340 63400 Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	5	1.6 8.0 -5 3 0	1.9 4 ∫€ 4	5 5.0 2 0	6.2 4 ∫ 25 <u>−24</u>	25 5.00 1 0	8∫ =1	2.5 20.0 16 4 0
$\begin{array}{c cccc} & \underline{0} & \underline{0} & \underline{20} & \underline{0} \\ \underline{-20} & \underline{0} \\ \hline \\ \underline{-20} & \underline{0} \\ \hline \\ $		<u>-30</u>	_	20		-8		<u>-40</u>
$ \frac{1}{0} $ $ Qn 5 Amount paid daily = $196 + 8 \\ = $24.50 $ $ Qn 6 Cost of each pen = $42 + 8 \\ = $5.25 $ $ Qn 7 Mass of each packet = 145.2 kg + 6 \\ = 24.2 kg $ $ Qn 8 2 \text{ magazines} = 2 \times $4.50 \\ = $9 \\ $9 + $6.20 = $15.20 \\ 6 \text{ pens} = $50 - $15.20 \\ = $34.80 \\ 1 \text{ pen} = $5.80 \\ Qn 9 \\ 3 \text{ calculators} = 3 \times $15.50 \\ = $46.50 \\ $46.50 + $4.50 = $51 \\ 5 \text{ towels} = $100 - $51 \\ = $49 \\ 1 \text{ towel} = $49 + 5 \\ = $9.80 \\ \hline \end{tabular} $ $ Diff 4.9 - Number Patients on Decimals \\ Qn 1 \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$		_0	-	0	_	20		_0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Qn 5	Amou	nt paid	daily = \$ = \$	196 ÷ 8 24.50			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Qn 6	Cost	of each	pen = \$4 = \$	42 + 8 5.25			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Qn 7	Mass	of each	packet =	= 145.2 kg 24.2 kg	g ÷ 6		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Qn 8	2 mag	azines	= 2 × \$4	.50			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\$9 +	\$6.20	= \$15.2	0				
$ \begin{array}{l} = \$34.80 \\ 1 \text{ pen} &= \$34.80 + 6 \\ = \$5.80 \\ \hline \\ \hline Qn 9 \\ 3 \text{ calculators} &= 3 \times \$15.50 \\ &= \$46.50 \\ \$46.50 + \$4.50 = \$51 \\ 5 \text{ towels} &= \$100 - \$51 \\ &= \$49 \\ 1 \text{ towel} &= \$49 + 5 \\ &= \$9.80 \\ \hline \\ $	6 per	IS	= \$50 -	\$15.20				
$\begin{array}{r} pen' = 334.00 + 0 \\ = $5.80 \\ \hline \\ \hline Qn 9 \\ 3 calculators = 3 \times $15.50 \\ = $46.50 \\ $46.50 + $4.50 = $51 \\ 5 towels = $100 - $51 \\ = $49 \\ 1 towel = $49 + 5 \\ = $9.80 \\ \hline \\ \hline \\ \hline \\ \hline \\ Qn 1 \\ \hline \\$	1 000		= \$34.8	0				
$\begin{array}{r} \hline eq:generalized_linear$	i per		= \$5.80	0+0				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Qn 9)						
	3 cal	culators	= 3 ×	\$15.50				
$\begin{array}{rrrr} $$46.50 + $4.50 = 51 \\ $5 towels &= $100 - 51 \\ &= 49 \\ $1 towel &= $49 + 5$ \\ &= 9.80 \\ \hline \hlineleft{Model} $$ Unit 4.9 - Number Patterns on Decimals$ \\ \hline On 1$ \\ \hline \hlineleft{Model} $$ 0.326$ 0.032$ 0.0032$ 32$ 320$ 3200$ \\ \hline 1 & 3.26$ 0.326$ 0.0326$ 0.00326$ 32.6$ 326$ 3260$ \\ 2 23.45$ 2.345$ 0.2345$ 0.02345$ 234.5$ 2345$ 0.2345$ 23455$ \\ \hline 3 & 0.34$ 0.034$ 0.0034$ 0.0034$ 3.4$ 34$ 340$ \\ \hline 4 & 2.012$ 0.2012$ 0.02012$ 0.002012$ 20.12$ 201.2$ 2012$ \\ \hline 5 & 63.4$ 6.34$ 0.634$ 0.0634$ 634$ 6340$ 63400$ \\ \hline On 2$ (a) 2.3, 2.8$ (b) 3.1, 3.9$ (c) 14.04, 14.08 (d) 5.5, 6.1$ \\ (e) 6.20, 6.30$ (f) 8.30, 8.55$ \\ \hline (g) 4.29, 4.47$ \\ \hline On 3$ (a) 1.41, 1.45$ (b) 2.65, 2.05$ \\ \hline \end{array}$			= \$46	6.50				
= \$49 1 towel = \$49 1 towel = \$49 1 towel = \$49 + 5 = \$9.80 Unit 4.9 - Number Patterns on Decimals Qn 1 No. Number +10 +100 +1000 x10 x100 x1000 Eg 3.2 0.32 0.032 0.0032 32 320 3200 1 3.26 0.326 0.0326 0.00326 32.6 326 3260 2 23.45 2.345 0.2345 0.02345 234.5 2345 23450 3 0.34 0.034 0.0034 0.0034 3.4 34 340 4 2.012 0.2012 0.02012 0.002012 20.12 201.2 2012 5 63.4 6.34 0.634 0.0634 634 6340 63400 Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	\$46.	50 + \$4.5 vels	0 = \$51 = \$10	1 10 - \$51				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5 104	1015	= \$49	9				
= \$9.80 Unit 4.9 - Number Patterns on Decimals On 1 No. Number +10 +100 +1000 x10 x100 x1000 Eg 3.2 0.32 0.032 0.0032 32 320 3200 1 3.26 0.326 0.0326 0.00326 32.6 3266 3260 2 23.45 2.345 0.2345 0.02345 234.5 23450 3 0.34 0.034 0.0034 0.00034 3.4 34 340 4 2.012 0.2012 0.02012 0.002012 20.12 201.2 2012 5 63.4 6.34 0.634 0.0634 634 6340 63400 Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	1 tov	vel	= \$49	9÷5				
Unit 4.9 – Number Patterns on Decimals On 1 No. Number +10 +100 ×100			= \$9.8	80				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Unit	t 4.9 – N	lumbei	r Patteri	ns on De	cimals	S	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Qn	1		100	4 000	40	400	1 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO.	Number	+10	+100	+1 000	x10	220	×1 000
2 23.45 2.345 0.2345 0.02345 234.5 2345 23450 3 0.34 0.034 0.0034 0.0034 24.5 2345 23450 3 0.34 0.034 0.0034 0.0034 3.4 34 340 4 2.012 0.2012 0.02012 0.00212 20.12 201.2 2012 5 63.4 6.34 0.634 0.0634 634 6340 63400 Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05 5.5	1	3.26	0.326	0.0326	0.00326	32.6	326	3260
3 0.34 0.034 0.0034 0.0034 3.4 34 340 4 2.012 0.2012 0.02012 0.002012 20.12 201.2 2012 5 63.4 6.34 0.634 0.0634 634 6340 63400 Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05 5.5	2	23.45	2.345	0.2345	0.02345	234.5	2345	23450
4 2.012 0.2012 0.00212 2.012 <th2< td=""><td>3</td><td>0.34</td><td>0.034</td><td>0.0034</td><td>0.00034</td><td>3.4</td><td>34</td><td>340</td></th2<>	3	0.34	0.034	0.0034	0.00034	3.4	34	340
5 63.4 6.34 0.634 0.0634 634 6340 63400 Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47	4	2.012	0.2012	0.02012	0.002012	20.12	201.2	2012
Qn 2 (a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	5	63.4	6.34	0.634	0.0634	634	6340	63400
(a) 2.3, 2.8 (b) 3.1, 3.9 (c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	Qn 2	2						
(c) 14.04, 14.08 (d) 5.5, 6.1 (e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	(a)	2.3, 2.8	5	(b)	3.1, 3.9			
(e) 6.20, 6.30 (f) 8.30, 8.55 (g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	(c)	14.04,	14.08	(d)) 5.5, 6.1			
(g) 4.29, 4.47 Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	(e)	(e) 6.20, 6.30 (f) 8.30, 8.55						
Qn 3 (a) 1.41, 1.45 (b) 2.65, 2.05	(g)	4.29, 4	.47					
(a) 1.41, 1.45 (b) 2.65, 2.05	Qn 3	3						
	(a)	1.41, 1	.45	(b)	2.65, 2.0)5		
(c) 3.31, 3.41 (d) 14.5, 13.3	(c)	3.31, 3	.41	(d) 14.5, 13	.3		
(e) 3.30, 3.45 (f) 13.8, 9.3	(e)	3.30, 3	.45	(f)	13.8, 9.3	3		
	(g)	2.64, 4	.14	. ,				
	(g)	2.64, 4	.14					

Char	oter 5 Area and Perimeter
Unit 5	5.1 – Finding Area and Perimeter with Given
On 1	Sides
(a)	Area = 7 cm × 3 cm
	= 21 cm² Perimeter = (7 cm + 3 cm) × 2
(b)	= 20 cm Area = 13 cm × 4 cm
(2)	= 52 cm² Perimeter = (13 cm + 4 cm) × 2
(c)	= 34 cm Area = 18 cm × 12 cm
(0)	$= 216 \text{ cm}^2$
	$= 30 \text{ cm} \times 2$ $= 60 \text{ cm}$
<u></u>	- 00 cm
(a)	Area = 7 cm × 7 cm
()	= 49 cm² Perimeter = 7 cm x 4
	= 28 cm
(b)	$= 225 \text{ cm}^2$
	Perimeter = 15 cm × 4 = 60 cm
(c)	Area = 13 cm × 13 cm = 169 cm ²
	Perimeter = 13 cm × 4 = 52 cm
Unit 5	.2 – Finding Sides with Given Area or
	Perimeter
Qn 1 (a)	Breadth = 72 cm ² \div 9 cm
(u)	= 8 cm
	Perimeter = $(9 \text{ cm} + 8 \text{ cm}) \times 2$
(b)	Breadth = 150 cm ² \div 15 cm
	= 10 cm
	= 50 cm
(c)	Length = 84 cm ² ÷ 4 cm = 21 cm
	Perimeter = $(21 \text{ cm} + 4 \text{ cm}) \times 2$
(d)	Length = $150 \text{ cm}^2 \div 10 \text{ cm}$
	= 15 cm Perimeter = (15 cm + 10 cm) x 2
	= 50 cm
Qn 2	
(a)	Length = 3 cm Designator = $3 \text{ cm} \times 4$
	= 12 cm
(b)	Length= 8 cm Perimeter = 8 cm × 4
(-)	= 32 cm
(C)	Perimeter = 6 cm × 4
(d)	Length = 5 cm
	Perimeter = 5 cm × 4 = 20 cm

(a)	Longth	$= 24 \text{ om} \pm 4$
(a)	Length	= 24 cm ÷ 4 = 6 cm
	Area	$= 6 \text{ cm} \times 6 \text{ cm}$
(b)	Length	= 44 cm ÷ 4
	Area	= 11 cm = 11 cm × 11 cm
(c)	Length	$= 121 \text{ cm}^2$ = 64 cm ÷ 4
	Area	= 16 cm = 16 cm × 16 cm
(d)	Length	= 256 ccm^2 = $56 \text{ cm} \div 4$
	Area	= 14 cm = 14 cm × 14 cm = 196 cm²
Unit 5.	3 –Area an (Basic)	d Perimeter of Composite Figure
Qn 1		
20 - 8 =	12	
$12 \div 2 =$ 16 - 6 =	10	
10 ÷ 2 =	5	
Area A =	16 cm × 6 c	m
Aroa B -	96 cm ²	m
= 100	60 cm ²	
Area C =	8 cm × 5 cm	1
= Tatal A	= 40 cm ²	C02 + 402
Total Are	a = 96 cm ² + = 196 cm²	- 60 cm² + 40 cm²
Total Per	rimeter = (16	cm + 20cm) × 2
	= 72 (cm
Qn 2		
Area A = =	22 cm × 4 c 88 cm ²	m
Area B =	8 cm × 8 cm	ı
=	64 cm ²	
Area C =	32 cm^2	1
- Total Are	a = 88 cm ² +	+ 64 cm² + 32 cm² ²
Total Per	rimeter = (22 = 84	cm + 4 cm + 16 cm) × 2 cm
Qn 3		
Area of h	ia sauare = ·	14 cm × 14 cm
Area of 4	small squar	196 cm² es = 4 ×3 cm × 3 cm
		$= 36 \text{ cm}^2$
Area of r	emaining figu	ure = 196 cm ² - 36 cm ² = 160 cm²
Perimete	r of remainin	g figure = 4×14 cm
		= 56 cm

Qn 4

Qn 3 (a)

Qn 4 Area of big square = $18 \text{ cm} \times 18 \text{ cm}$ = 324 cm^2 Area of 4 small squares = $4 \times 4 \text{ cm} \times 4 \text{ cm}$ = 64 cm^2 Area of remaining figure = $324 \text{ cm}^2 \cdot 64 \text{ cm}^2$ = 260 cm^2 Perimeter of remaining figure = $4 \times 18 \text{ cm}$ = 72 cm

Qn 5

Area of rectangle = $14 \text{ cm} \times 10 \text{ cm}$ = 140 cm^2 Area of 4 squares = $4 \times 2 \text{ cm} \times 2 \text{ cm}$ = 16 cm^2 Area of remaining figure = $140 \text{ cm}^2 - 16 \text{ cm}^2$ = 124 cm^2 Perimeter of remaining figure = $(14 \text{ cm} + 10 \text{ cm}) \times 2$ = 48 cm

Qn 6

Area of rectangle = $22 \text{ cm} \times 14 \text{ cm}$ = 308 cm^2 Area of 4 squares = $4 \times 2 \text{ cm} \times 2 \text{ cm}$ = 16 cm^2 Area of remaining figure = $308 \text{ cm}^2 - 16 \text{ cm}^2$ = 292 cm^2 Perimeter of remaining figure = $(22 \text{ cm} + 14 \text{ cm}) \times 2 + 2 \text{ cm} + 2 \text{ cm} + 2 \text{ cm} + 2 \text{ cm}$ = 72 cm + 8 cm= 80 cm

Unit 5.4 – Area and Perimeter with Proportional Sides

Qn 1

Length × Breadth = 108 cm² 3 units × 1 unit = 108 cm² 1 unit × 1 unit = 108 cm² + 3 $= 36 cm^2$ Breadth (1 unit) = 6 cm Length = 3 × 6 cm = 18 cmPerimeter = (18 cm + 6 cm) × 2 = 48 cm

Qn 2

Length × Breadth = 64 cm^2 4 units × 1 unit = 64 cm^2 1 unit × 1 unit = $64 \text{ cm}^2 + 4$ = 16 cm^2 Breadth (1 unit) = 4 cmLength = $4 \times 4 \text{ cm}$ = 16 cmPerimeter = (16 cm + 4 cm) × 2= 40 cm

Qn 3

Length × Breadth = 27 cm² 3 units × 1 unit = 27 cm² 1 unit = 27 cm² ÷ 3 = 9 cm² 1 unit = 3 cm Length = 3 × 3 cm = 9 cm Breadth = 3 cm Perimeter = (9 cm + 3 cm) × 2 = 24 cm Qn 4 Breadth = 2 units Length = 3 units 2 units \times 3 unit = 54 cm² 1 unit \times 1 unit = 54 cm² + 6 = 9 cm² 1 unit = 3 cm Breadth = 2 \times 3 = 6 cm Length = 3 \times 3 = 9 cm Perimeter = (6 cm + 9 cm) \times 2 = **30 cm**

Qn 5

```
Breadth = 3 units

Length = 4 units

3 units × 4 unit = 192 cm<sup>2</sup>

1 unit × 1 unit = 192 cm<sup>2</sup> + 12

= 16 cm<sup>2</sup>

1 unit = 4 cm

Breadth = 3 × 4

= 12 cm

Length = 4 × 4

= 16 cm

Perimeter = (12 cm + 16 cm) × 2

= 56 cm
```

Unit 5.5 – Area and Perimeter of Squares using Guess and Check

Qn 1

Guess-and-Check: 100 - 49 = 51 $(10 \times 10) - (7 \times 7) = 51$ Area of big square = 100 m² (10 m × 10 m) Area of garden = 100 m² - 51 m² = **49 m²** (7 m × 7 m)

Qn 2

 $\begin{array}{l} \mbox{Guess-and-Check:} \\ 144-64=80 \\ (12\times12)-(8\times8)=80 \\ \mbox{Area of big square}=144\ m^2\ (12\ m\times12\ m) \\ \mbox{Area of garden}=144\ m^2-80\ m^2 \\ &= 64\ m^2\ (8\ m\times8\ m) \end{array}$

Qn 3

Length of square garden = $36 \text{ m} \div 4$ = 9 mArea of square garden = $9 \text{ m} \times 9 \text{ m}$ = 81 m^2 Area of big square = $12 \text{ m} \times 12 \text{ m}$ = 144 m^2 Area of path = $144 \text{ m}^2 - 81 \text{ m}^2$ = 63 m^2

Qn 4

Length of pool = 64 m + 4= 16 mArea of swimming pool = $16 \text{ m} \times 16 \text{ m}$ = 256 m^2 Area of square = $20 \text{ m} \times 20 \text{ m}$ = 400 m^2 Area of border = $400 \text{ m}^2 - 256 \text{ m}^2$ = 144 m^2

Qn 5 Length of square garden = 8 m (8 m × 8 m = 64 m²) Area of big square = (8 + 6) m × (8 + 6) m = 14 m × 14 m = 196 m² Area of pathway = 196 m² - 64 m² = 132 m² Qn 6 Length of small square = 8 cm (8 m × 8 m = 64 m²) Length of big square = 8 cm + 4 cm = 12 cm Area of big square = 12 cm × 12 cm = 144 cm² On 7Since 64 - 16 = 48 Area of big square = 64 cm² Qn 8 Since 36cm² + 64cm² = 100 cm² Length of small square = 6 cm Length of big square = 8 cm Total perimeter = (6 cm + 8 cm + 8 cm) × 2 = 44 cm Qn 9 Since 81 cm² + 144 cm² = 225 cm² Length of small square = 9 cm Length of big square = 12 cm Total perimeter of figure = (12 cm + 12 cm + 9 cm) × 2 = 66 cm Unit 5.6 – Area and Perimeter of Composite Figures (Intermediate) Qn 1 Area of garden = 9 m × 5 m = 45 m² Area of big rectangle = 13 m × 9 m = 117 m² Area of pathway = 117 m² - 45 m² = 72 m² Qn 2 Area of garden = 13 m × 8 m = 104 m² Area of pond = 9 m × 4 m = 36 m² Area of pathway = 104 m² - 36 m² = 68 m² Qn 3 Perimeter of garden = (2 units + 1 unit) × 2 = 6 units 6 units = 48 m 1 unit = 48 m ÷ 6 = 8 m Area of garden = 16 m × 8 m = 128 m² Area of big rectangle = 20 m × 12 m = 240 m² Area of pathway = 240 m² - 128 m² = 112 m²

Qn 4 Area of pond = 3 units × 1 unit = 48 m² 1 unit × 1 unit = 48 m² ÷ 3 = 16 m² 1 unit = 4 m Length (pond) = 3 × 4 m = 12 m Breadth (pond) = 4 m Area of big rectangle = 14 m × 6 m = 84 m² Area of pathway = 84 m² - 48 m² = 36 m² Qn 5 Area of field = 2 units × 1 unit = 3200 m² 1 unit × 1 unit = 3200 m² ÷ 2 = 1600 m² 1 unit = 40 m Length (field) = 2 × 40 m = 80 m Breadth (field) = 40 m Area of big rectangle = 90 m × 50 m = 4500 m² Area of track = 4500 m² - 3200 m² = 1300 m² Qn 6 8 m 3 m Perimeter of figure = (6 m + 11 m) × 2 12 m² 32 m² 4 m 4 m = 34 m 2 m 16 m² 6 m² 2 m 8 m 3 m Qn 7 7 m 3 m Perimeter of figure = (10 m + 7 m) × 2 5 m 35 m² 15 m² 5 m = 34 m 14 m² 6 m² 2 m 2 m 7 m 3 m Qn 8 10 m 5 m Area of A = 10m × 3m 60 m² 30 m² 6 m 6 m = 30 m² 3 m А 15 m² 3 m 10 m 5 m Qn 9 14 m 6 m Shaded Area = 14 m × 2 m 8 m 112 m² 48 m² 8 m = 28 m² 12 m² 2 m 6 m

Chapter 6 Graphs

Unit 6.1 – Tables and Bar Graphs

Qn 1 (a)				
	Class 5A	Class 5B	Class 5C	Class 5D
Number of boys	12	24	18	24
Number of girls	24	22	14	18
Total number of pupils	36	46	32	42
(b) Class 5B	(c) 78 (d) 78			
() D				

(e) Boys = 12 + 6 = 18

Girls = 24 - 3

= 21 Pupils = 18 + 21

= 39

Qn 2 (a)

	Car	Public Bus	School Bus	MRT
Number of pupils	12	14	18	9

- (b) 18 + 12 = 30
- (c) 14 12 = 2

(d) 60 - 53 = 7

Qn 3 (a)

	Class 4A	Class 4B	Class 4C	Class 4D
Number of swimmers	32	26	34	28
Number of non-swimmers	8	14	6	12

(b) 8 + 14 + 6 + 12 = 40

- (c) 34 28 = 6
- (d) 14 8 = 6

On	4	(a)
QII	•	(a)

	8 a.m.	10 a.m.	12 p.m.	2 p.m.	4 p.m.	6 p.m.	8 p.m.
Temperature (°C)	16	18	20	25	23	18	17

(b) 2 p.m.

- (c) 6 p.m. and 8 p.m.
- (d) 12 p.m. and 2 p.m.
- (e) 18°C 5°C = 13°C

Qn 5 (a)

	Ramesh	Imran	Mike	James
March	\$9000	\$7000	\$12000	\$8000
April	\$7000	\$9000	\$22000	\$10000
May	\$16000	\$13000	\$7000	\$12000
b) Mike (c) Imran		ran	(d) \$132	000

Qn 6 (a)

No. of rainy days	January	February	March	April	May
2022	12	11	4	5	14
2023	10	8	6	7	11

(b) 2022 (c) Feb 2023

(d) Jan 2022 (d) 56 days Unit 6.2 – Interpreting Line Graphs Qn 1(a) 12 pm (b) 4 (c) 13 (d) 22 (e) 4 Qn 2(a) \$16 000 (b) 2007 (c)\$24 000 - \$4 000 = \$20 000 Qn 3(a) 48 kg (b) April and May (c) 38 kg (d) June Qn 4(a) Total = 8 + 14 + 18 + 34 + 26 = 100 (b) 34 + 26 = 60 (c) 26 - 14 = 12 (d) 8 + 14 = 22 Qn 5 (a) Total = 11 + 13 + 9 + 15 + 27 = 75 (d) 11 + 13 + 9 = 33 (b)27 – 13 = 14 (c) Friday Qn 6 (a) 37.7°C (b) 11 a.m., 2 p.m. and 4 p.m. (c) 9 a.m. to 10 a.m., 2 p.m. to 3 p.m.

(d) 7 hours, from 10 a.m. to 5 p.m.

Unit 6.3 – Reading and Interpreting Pie Charts

Qn 1 $=\frac{5}{10}$ 3 3 1 2 10 10 2 = 10 2 10 = 8 total 1 total = 8 ÷ 2 10 = 4 10 total = 10 × 4 10 = 40 (a) Basketball = $\frac{1}{4} \times 40$ 4 = 10 Badminton = $\frac{3}{10}$ (b) × 40 = 12 Total pupils = 40 (c) $\frac{8}{40}$ $\frac{1}{5} = \frac{1}{5}$ (d)

+hinkingMath™

Qn 7

Chef Benedict had 11 ¹/₆ kg of flour left.

Serene nad

Number of pupils
5 7+3
8 📢 +3
11 2

(a) No. of pupils = 15 × 3 + 2 = 47

47 pupils can be seated.

```
    (b) 104 - 2 = 102
102 + 3 = 34
    34 tables can seat 104 pupils altogether.
```

Qn 15

No. of Adults	Adults (Cost)	No. of Children	Children (Cost)	Total Cost	Check
50	50 × 12 = 600	0	0	600	x
49	49 × 12 = 588	1	1 × 8 = 8	588 + 8 = 596	x
17	17 × 12 = 204	33	33 × 8 = 264	204 + 264	~

600 - 596 = 4

Target difference	= 600 - 468
	= 132
No. of children	= 132 + 4
	= 33

00							
Mrs Krishnan	bought 33	children	tickets.				

Qn 16

 $\begin{array}{c} W = 8u^{x2}(16u) \\ E = 5u^{x2}(10u) \\ E = 2u^{x5}(10u) \\ D = 1u^{x5}(5u) \end{array} \\ \begin{array}{c} W = 16u \\ E = 10u \\ D = 5u \\ D = 5u \\ D = 5u \\ \end{array} \\ \begin{array}{c} Total = 16u + 10u + 5u \\ = 31u \\ 31u = 930 \\ 1u = 930 + 31 \\ = 30 \\ 16u = 16 \times 30 \\ = 480 \\ \end{array} \\ \begin{array}{c} Winnie \ bought \ \textbf{480 marbles}. \end{array}$

= 1440

Jordan had \$1440 at first.

Qunnie had 66 stickers at first.

Qn 36 $\frac{1^{*2}}{3^{*2}}P = \frac{2}{5}A$ $\frac{2}{6}P = \frac{2}{5}A$ P = 6u A = 5u Difference = 6u - 5u = 1u 1u = 28 5u = 5 × 28 = 140 Mrs Loh bought 140 apples. Qn 37 48 pens = 60 pencils 8 pens = 10 pencils Since 8 pens = 10 pencils, pencils he had already bought = 16 + 10 = 26 Difference = 60 - 26 = 34 James can buy 34 more pencils. Qn 38 Ribbon B = 1u Ribbon A = 1u + 12 Ribbon C = 1u + 25 Ribbon D = 1u + 60 4u = 357 - 97 = 260 1u = 260 ÷ 4 = 65 Ribbon D = 65 + 60 = 125 The length of the longest ribbon is 125 cm Qn 39 Amount of money = 20 × 3 = 60 Cost of a bowl of ice cream = 3 - 0.5 = 2.5 No. of bowls = 60 + 2.5 = 24 No. of bowls extra = 24 - 20 = 4 Melvin can buy 4 more bowls of ice cream.

Qn 40

20 c = 9u

50 c = 4u

Items

20 c

50 c

Total

380u = 5700

1u = 15 13u = 13 × 15 = 195

 $\frac{1^{*3}}{3^{*3}}(20 \text{ c}) = \frac{3}{4}(50 \text{ c})$ $\frac{3}{9}(20 \text{ c}) = \frac{3}{4}(50 \text{ c})$

Qty

9u

4u

13u

There was a total of 195 coins

×

×

×

Value (c)

20

50

Total value (\$)

180u

200u

380u